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— Random Variables
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O A (discrete) random variable is a numerical quantity that in
some experiment (involving randomness takes a value from
some discrete set of possible values.

¢ More formally, these are measurable maps X(w),w € £2, from
a basic probability space (£2, F, P) (= outcomes, a sigma field
of subsets of 2 and probability measure P on F).

$ Events ... {w € Q|X(w) = z;}... same as {X = =z} [X
assumes the value z;.
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SE Examples
e

{ Example 1: Rolling of two six-sided dice. Random Variakle
might be the sum of the twoe numbers showing on the dice.
The possible values of the random wvariable are 2, 3, ..., 12.

O Example 2: Occurrence of a specific word GAATTC in a
genome. Random Variable might be the number of occur-
rence of this word in a random genome of length 3 x 109,
The possible values of the random variable are 0, 1, 2, ...,
3 % 10%.
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~=  Probability Distribution
o

& The probability distribution of a discrete random variable ¥
is the set of values that this random variable can take, to-
gether with the set of associated probabilities.

Probabilities are numbers in the between zero and one inclu-
sive that always add up te cne when summed over all possible
values of the random variable.
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Rernoulli Trial
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O A Bernoulli trial is a single trial with two possible ocutcomes:
“success” & “failure.” [P(success) = p and P(failure) =

1—-p=gq.

Random variable S takes the value —1 if the trial results in
failure and 1 if it results in success.

Ps(s) = pIH92g079/2 s = 1, 41,
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— RBinomial Distribution
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O A Binomial random variable is the number of successes in a
fixed number n of independent Bernoulli trials (with success
probability = p).

Random variable ¥ denotes the total number of successes in
the n trials.

T _
Py(y) = (y)pyq” Y y=0,1,...,n
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— Uniform Distribution
Sog

O A random variable Y has the uniform distribution if the pos-

sible values of Y are a, a+ 1, ..., a+ &— 1 for two integer
constants a and b, and the probability that ¥ takes any spec-
ified one of these b possible values is b1

Py(y)=bfl, y=a,a+1,...,a+b— 1.
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o~ Geometric Distribution
e

{ Suppose that a sequence of independent Bernoulli trials is
conducted, each trial having prebability p of success. The
random variable of interest is the number ¥ of trials before
but not including the first failure. The possible values of Y
are 0, 1, 2, ....

Pr(y) =pYq, y=0,1,....
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Poisson Distribution

.k.m.\m

$ A random variable Y has a Poisson distribution (with param-
eter A > Q) if

e Ny

Py(y) =

T Y= 0,1,....
y.
The Poisson distribution often arises as a limiting form of
the binomial distribution.
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S Continuous Random Variables
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& We denote a continuous random variable by X and observed
value of the random variable by =.

$ Each random variable X with range I has an associated den-
sity function fx(z) which is defined, positive for all =z and
integrates to one over the range 1.

b
Prob(a < X < b) =/a Fx () da.
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C

= Normal (Gaussian) Distribution

O A random variable X has a normal or Gaussian distribution
if it has range (—oco,cc) and density function

() 1 _Gw?
= 2o
fX x* ,771_0_8 H

where p and ¢ > 0 are parameters of the distripution.
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— Expectation
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{ For a random variable Y, and any function g(Y) of Y, the
expected value of g(Y) is

E(g(Y)) =3 g() P (y),
Y

when Y is discrete; and

E(g(Y)) = ]y o) Fy () dy,

when Y is continuous.

O Thus, mean(Y) = E(Y) = p(Y), variance(Y) = E(Y?) —
E(Y)2 =¢2(Y).
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SEy Conditional Probabilities
el

{ Suppose that 4 and A, are two events such that P(A,) #= 0.
Then the conditional probability that the event Ay occurs,
given that event A, occurs, denoted by P(Aj|A3) is given by
the formula

P(A1&45)

P(A1l42) = =200
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=
e Bayes Rule

Bayes Rule

$ Suppose that A1 and A, are two events such that P(A41) #0
and P(A5) == 0. Then
PA2)P(A1|Az)

P(Ap|A1) = PAD
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Bayes’ Rule

¢ Can rearrange the conditional probability formula

p(45) = ZAAA) (BL;EJ);; 4

¢ toget PCAIB) P(B) = P(A,B), but by symmetry we can also get: P(BIA)
P(A) = P(AB) It follows that:

P(4,B)

PUIB) =

¢ The power of Bayes’ rule is that in many situations where we want to
compute PCAIB) it turns out that it is difficult to do so direc’c]?/, yet we
might have direct information about P(BIA). Bayes’ rule enables us to
compute PCAIB) in terms of P(BIA).
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Markov Models

.k...._....'\%...-..

{ Suppose there are n states 51, S5, ..., Sz. And the probability

of moving to a state Sj from a state S; depends only on 5;,
but not the previous history. That is:

P(s(t +1) = Sjls(t) = S;, (¢ — 1) = Sj;,...)
= P(s(t+1) = Sj|s(t) = S).

Then by Bayes rule:

P(S(O) = Siozs(l) = Sila"':s(tf 1) = Sitflzs(t) = Szt)
= P(s(0) = 8;,) P(515;,) - P(53,18;,_1)-
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{ Hidden Markov Models
(HMM)

.
4

o Defined by an alphabet %,
» A set of Chidden) states Q,
= A matrix of state transition probabilities A,
= and a matrix of emission probabilities E.
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States

o X = An alphabet of symbols

* Q= A set of states that emit symbols from the alphabet =
* A=(3y) = lal £1Ql matrix of state transition probabilities
o E=(e (B)) =1Ql £ IZ] matrix of emission probabilities
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A Path in the HMM

< n:nqnz...nh

= 3 sequence of states 2 Q" in the hidden Markov model M
¢ x2 X" =sequence denerated by the path m, determined by the model M
¢ P(xlm) = P(r) [ TI." P(x I ) P(m | ) 1
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S A Path in the HMM
=]

¢ P m) = [T PCx I ) P(r, I m,,) 1 P(my)

o P(xIm)=e (x)

o P(mlm,) = Ani, i+t

*  my = Initial state “begin”

¢ m = Final state “end”

¢ P(xlm)
= A0 € (X)) Ay (%) e (X)) Ay,
= a0, Hi” €2(X) A 21

10/18/2005 ©
Bud Mishra, 2005

L2-21

= Decoding Problem
=N

¢ Fora given sequence x, and a given path r,
The model (Markovian) defines the probability P(x | r)
¢ The dealer knows m and x
¢ The player knows x but not n
“The path of x is hidden.”
¢ Decoding Problem:
Find an optimal path n* for x such that P(xIr) is maximized.

n* = arg max, P(xlr)
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~ | Dynamic Programming Approach

¢ Principle of Optimality:
o Optimal path for the (i+1)-prefix of x
Xyt X
o uses 3 path for an i-prefix of x that is optimal among the paths
ending in an (unknown) statem; =k 2 Q
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~=  Dynamic Programming Approach
=

o 5,(i) = The probability of the most probable path for the i-prefix ending in
state k.

8|<ZQ 81515n
Sl(i+1> - e[(XHT)' MaX.2 q [Sk([) ' a|<[]
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~—2  Dynamic Programming
=

e =0
Sbegm(o) =1 SI<(O> =0, 8k¢ begin
¢ O<ibn
51(i+1) = ¢/(x,,) ¢ max, o [ 5,(1) € ay ]
o j=n+l
P(x|n*) = maXys q Sk<n) AL end
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Viterbi Algorithm
T O
=<
¢ Dynamic Programming with log-score function
S[(l) = lOg 5|(i)
¢ Space complexity = O(n 1Ql)
¢ Time complexity = O(n 1Ql)
¢ S(i+1) = log e(x,,)
+ MaXiz [ Sk(l) * IOg A 1
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Bayesian Probabilities
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Bayesian Interpretation

)

o AT

o Probability P(e) - our uncertainty about whether e is
true or false in the real world

= (given whatever information we have avialable)
> “Degree of Belief”
¢ More rigorously, we shoul write

= conditional probability P(e | L) i represents degree
of belief, where L is the background information on
which our belief is based
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=
= Probability as a Dynamic Entity
...m.\...-.!.

<

10/18/2005

Update the “degree of belief” as more data arrives:

Bayes Theorem: P(e | D) = P(D | &) P(e)/P(D)

Prior Probability: P(e) is your belief in the event e
before you see any data at all

Posterior. P(e| D) is the updated posterior belief in e
given the observed data.

Likelihood: P(D | e) > probability of the data under the
assumption e.

Posterior is proportional to the prior.
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Dynamics

P(e| D, D,) = P(D, | e, D) P(e| D)/ P(D, | D,)

Important Observation:

The effects of prior diminish as the number of data
points increases.

The Law of Large Number:

With large number of data points, Bayesian and
frequentist viewpoints become indistinquishable.
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= Parameter Estimation

¢ Functional form for 3 model M
= Depends on parameters ©
» Best estimation for @?

o Typically our parameters ® are a set of real-valued
numbers

= Both prior P(®) and the posterior P(® | D) are
defining probability density functions
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Maximum A Posteriori
Sy (MAP)

o Find the set of parameters ®

= maximizing the posterior P(® | D) or minimizing a
score ~-log P(® | D)

= E(©) = -log P(® | D)

= -log P(D | ®) - log P(®) + logP(D)

= Same 3s minimizing E(®) = -log P(D1©) - log
P(®)

= If the prior P(®) is uniform over the entire parameter
space (uninformative):

Minimize E (®) = -log P(D | ©)
= Maximum likelihood solution
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To be continued...
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